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Abstract,

This paper deals with the numerical modelling of salt water intrusion into freshwater aquifers,

Difficulties of the problem are presented, analysed and a possible ramediation is described. The case of

situation induced by systems of very large

1. INTRODUCTION

Many population living in coastal areas are
dependant on freshwater resources. However, this
resource is subject to a minor or severs seawater
intrusion. Countries facing with such a problem
include France, Belgium, the Netheriands, Greece,
United Kingdom, Marrocco and Australia.

The study of seawater intrusion is not new. The
first tmodel was introduced in 1888 by Ghyben
from the Netherlands, followed by Herzberg in
1901 from Germany and since has been known as
the Ghyben-Herzberg model. This madel was very
simple and 1t didn't take into account coavection,
dispersion and diffusion phenomena responsible
for salt water intrusion.

Singe the develpoment of Ghyben-Herzberg model,
numerous solutions for this problem have been
proposed by various investigators, However, an
unportant part of these solutions are based on a two
dimensional representation and they don't take into
account phenomena which can be considered as
three dimensional.

I, MODELLING

Our model has been developped in 1993 (Jacob er
al., 1993} in order to simulate flow and sclute
transport in saturated porous media with density
dependent groundwater flow and solute transport.
In this paper. we present a study of numerical
problem that we have encounterad in such three
dimensional modellings. The fluid mass balance
equation in saturated porous media, taking into
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size is also investigated and a new parallel algorithm is provided.

account twe primary dependant variables, the
pressure P(x, y, z. ) and the concentration C(x, v,
Z1 t). can be expressed as :
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where X, y, Z are coordinate variables (L}, t is the
time (T) is the specific pressure storabivity
(LT™M ), e s poresity (dimensionless), p is fluid
density (ML™), u v1scosrty (ML, k is solid
matrix permeabii m/ (M%) and g 15 gravitational
acceleration (LT, This equation 1s  written
without second member because the fluid mass
sources are considered as boundary conditions.

The solute mass balance equation for a single
species stored in solution is expressed as -

dipe)
T + V0 epaCl- V.[ep(Dyi+ D). V(] =
where Dy (LT is apparent molecular diffusivity
of sofutes in solution in a porous medium, | is the
identity tensor {dimensionless), D (L’T‘) is the
chspers:on tensar and q is the average velocity
(LT™) based on the Darcy's law.

[t can be noted that. contrary to usual equaticens
published in literature, there is no second member
i the equations. In fact. the fluid mass sources are
considerad as boundary conditions on the mesh. A
variational formulation of the above equations has
been developped with relevant initial and boundary
conditions.

The convection-diffusion equation is an example of
hyperbolic type equation. Cominon methods for
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numerical solution of such an equation are the
method of characteristics (which is not easy to
extend in 3D case), the finite difference method
(easy to program but may present some difficulties
if the solution is not smooth), the finite volume and
the finite element methods. The finite volume
method is equivalent {in precision} to a finite
element method of degree 1. it preserves the
positivity of the sclution but it doesn't allow a
finest computation of the flux through the faces of
the elements.

The software EQS is based on the solutien of the
above two non linear partial differential equations.
which are dependant on each other by the
concentration € and the density p. A FEM (Finite
Element Method) is used with a 20 nodes
hexaedron. An interpolation of degre 2 allows us a
better computation of the fluid velocity. The
symumetric linear system obtained with the flow
equation is solved by a conjugate gradient method
preconditionned by a SOR methed with optimal
parameter. The nonlinear system generated from
the mass balance equation is soived by the double
conjugate gradient method where the matrix is
preconditionned by a LU decomposition. The time
dependance is solved by an implicit Euler scheme.

3. DESCRIPTION OF THE HENRY'S TEST

For a validation of the software EOS, we have used
the bench'mark of the Henry's problem which 1s an
academic case of salt water intrusion into
freshwater. The following domain is considered
{figure 1),
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Figure 1 . Geometrical domain for Henry's
problem
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The boundary conditions and the physical
parameters are summarized in Tables 1 and 2
respectively.

TABLE 1: Boundaries conditions

on face | VC.n=¢
piezometric level = I m
on face 2 C =00357
piezometric level = I m
on face 3 C=0

inflow rate = 6.66.107 kg.s™

TABLE 2 : Physical parameters

k= 1.020408 107w

au/0C = 0.0

po = 1000 kg.m™

Dy = 6066.10° m”.s™!
D=01d

=035

=001 kg m's’
py = 1025kg.m™
8p/aC = 700 kg.m™
$= 10 ms ket

The goal of this work is not the solution itself
which is in accordance with the Henry's solution
but the quality of this solution. In a numerical
modelling based on an usal or Galerkin finite
elemenis methed, some negative values will be
generated, in the Henry's test, for too many nodes.
The major interest of this test case lies in the
nature of the flow. indeed, the freshwater that is
ceming from the upstream face (n° 3} and
discharging through the downstream face (n°® I and
2y 1s disturbed by salt water intrusion located in the
lower part of the downstream face. This intruston
aperates naturatly by the density contrast. However
it is important to note that this numerical
phenomenon has not been observed in more
realistic cases and specially in cases where the flow
is smooth {uniform in its direction and its velocity).

Among these possible remediations, a selution
consists in a SUPG (Streamline Upwind Petrov
Galerkin) optimized method, it is o say a SUPG
method where the parameter of the upwind scheme
is optintzed. Thig method, more precisely
described by Johnson (1994) can be easily
implemented. [t only necessitates a modification of
the basic functions. i one notes ¢ the basic
functions used in the Galerkin's method, the type of
basic functions used in the SUPG method is



proq Ve where g is the flow velocity, Vg the
gradient of ¢ and (1 a parameter to be determined
(Brocks ¢f af., 1982). Note that if this parameter is
zero, the SUPG method becomes the classic finite
element method (Galerkin's method). Such a
method allows to take into account, for each
element, the upstream flow. Then it is useful to
research the optimal value for this parameter ¢ and
therefore to define a criterion for optimization. It
has been demonstrated that the minima of negative
values could be an efficient criterion {Crolet et «/..
19935)..

It is clear that the opuimization of the use of an
upwind scheme improves results, but it s not
suffictent because some negative values are always
ohtained during, a few time steps. It can be
ohserved that these vegative values are always
tocahized forwards of the front line. in the upper
part of the domain. The interest of this Henry's test
case lies in the fact that the streamlines are not
unidirectionnal and that there exists a "shear” in
the flow: normally, the freshwater is moving from
the upstream face (3) to the downstream face (2)
The salt water moeves into the domain from
downstream to upsiream. Therefore, there is in the
vicinity of the front line a zone in which there is
inversion of the flow direction (figure 2 ).

2.1 x-component

2.2

zZ-component

Figure 2 : Representation of the flux
by its componenis
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Figure 2 represents the flux inside the domain,
This stream has 3 components (one for sach axis)
and only the components along the x and z axis are
interesting. The field of the x-component is
regular, very smooth, on the contrary, the field of
the z-compenent present an unportant gradient
especially in the top and in front of the domain (see
the arrow).

The Henry's problem which is defined with the
initial conditions described in this paper, is very
academic.  In  fact, it contains 2  strong
discontinuity: a situation, where there is for the
concentratien of solute ar the tmitial ume, a zero
vaiue inside the domain and 2 strictly positive
value on a face has no physical reality In a
mathematical point of view, an assumption of
continuity in the boundary condition is not verifiad.
This is the reason why there s a numerical
perturbation (perfectly controlled) 1 the solution
for the solute concentration during a few tme
steps. In more conventional or more realistic
problems, there 15 no such disturbance.

4. DOMAIN DECOMPOSITION AND

PARALLEL COMPUTING

Parallel computing can be introduced at two levels.
The software itself can be parallelized and can
work on several processors. This parallelization is
not the geal of this presentation. Here, a camputer
ig a machine (sequential or parallel}) were the
software 15 ruaning. Now we describe the use of
several computers running together with the same
software and linked for commumication in order
solve a problem discretized to a very large sysiem,

The problem is defined on a domain £2which is
divided inte many other sub-domains (for instance
100 sub-domains) £2; without overlapping. The
PDE defined on £2can also be defined on each
subdomain £2, = The difficulty is to take into
account the boundary conditions (essentially the
Dirichlet condition). In fact, these conditicns are
only defined for the global problem and cannat be
reported on each £2; . 5o the problem which is
written on each £; is not mathematically well
defined because the unicity is not guaranted In
order to simplify the presentation we consider only
the flow problem with the unknown P. The
equation (1) 18 simidar to Laplace equation and the
solution is of the form P+a where the vaiue of the
constant a is determined from the Dirichlet
condition.



The equation (1) can be written on the sub-domain
£2; and computed to obtain a solution IT, . If we
note P, the restriction of the solution P of the
global problem to the sub-domaim £, we have : P,
=TI, + a; where a; is 2 constant defined on the sub-

domain £2; .

On the interface batween two sub-domams £2; and
Q, . we obtain two possible solutions: T and TI;
So, the computation of local selutions introduces a
jump wy =% -TT; on the interface 862, M 862

Now, let us limagine we have solved equation (1)
on all the sub-domains, we have computed jumnps
on all possible interfaces and the global solution
will be obtained when the values of coefficients
will be determined. But these coefficients are
salution of a global optimisation problem which
generally has a "small” size.

5. CONCLUSIONS

The physical problem of aquifer contamination {or
remediation) is the center of major questions in
environmental studies. Numerical stmulation needs
a robust scheme and the solution on a large size
domain. A scheme will be more robust if it respects
the physical aspect of the problem: such a
possibility is given by the SUPG method. Actually.
paratlel computing is, without any doubt, the only
one possibility to solve very large scale problem in
an acceptable computing time. The software can be
parallelized, but 1t is tmportant to parallelize the
oroblent. The method of domain decomposition is a
possible investigation but it needs to adapt the
usually used algorithms. The major advantage of
such a method is the possibility to have different
meshes in different sub-domains and to pursue
computation on a sub-demain only if there is 2
change wn 1ts boundary conditions.
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